Assistant Professor

Office phone: (773) 834-4302
Fax: (773) 702-6898
Office: BPSB 125C

Biography

Sarah London received her BA in Biology and Psychology from Middlebury College and her PhD in Neuroscience from UCLA. She completed her postdoctoral research at the University of Illinois at Urbana-Champaign.

Sarah London is interested in how the brain develops, especially how early experience can alter neural function and behavior. She uses the zebra finch songbird as her model system because males can learn their song during only one period in development (females cannot sing). She applies molecular and genomic tools in combination with behavioral manipulations to uncover neural processes that promote and limit the ability of young zebra finches to acquire song. This strategy allows one to discover mechanisms that may also be involved in human speech acquisition and other developmentally learned behaviors.

Research Interests

Brain development

Molecular and genomic correlates of behavior

Experience-dependent neural plasticity

Sensitive periods

Learning & memory

Language

Sex differences

Lab

London Lab 

Publications

Ahmadiantehrani S, London SE. (2017) A reliable and flexible gene manipulation strategy in posthatch zebra finch brain. Scientific Reports. 7, 43244.

London SE. (2016) Influences of non-canonical neurosteroid signaling on developing neural circuits. Current Opinion in Neurobiology. 40:103-110.

Louder MIM, Voss HU, Manna T, Carryl S, London SE, Balakrishnan CN, Hauber ME. (2016) Shared neural substrates of species recognition in parental and parasitic songbirds. Neuroscience Letters. 622:49-54.

Cacioppo S, Grippo AJ, London S, Goossens L, Cacioppo JT. (2015) Loneliness: Clinical import and interventions. Perspectives on Psychological Science. 10 (2): 238-249.

Lin LC, Vanier DR, London SE. (2014) Social information embedded in vocalizations induces neurogenomic and behavioral responses. PLoS One. 9(11): e112905.

Fusani L, Donaldson Z, London SE, Fuxjager MJ, and Schlinger BA. (2014) Expression of androgen receptor in the brain of a non-oscine bird with an elaborate courtship display. Neuroscience Letters. 578:61-65.

Balakrishnan CN, Mukai M, Gonser RA, Wingfield JC, London SE, Tuttle EM, Clayton DF. (2014) Brain transcriptome sequencing and assembly of three songbird model systems for the study of social behavior. PeerJ. 2:e396.

Clayton DF and London SE. (2014) Advancing avian behavioral neuroendocrinology through genomics. Frontiers in Neuroendocrinology. 35(1):58-71.

London SE. (2013) Prospective: how the zebra finch genome strengthens brain-behavior connections in songbird models of learned vocalization. In Animal Models of Speech and Language Disorders, Santosh Helekar, editor.

London SE. (2013) Genome-brain-behavior interdependencies as a framework to understand hormone effects on learned behavior. General and Comparative Endocrinology. 190:176–181.

Drnevich J, Replogle K, Arnold AP, Ball GF, Brenowitz E, Johnson F, London SE, Lovell P, Mast TG, Mello C, Mukai M, Strand C, Wade J, Wingfield JC, and Clayton DF. (2012) The impact of experience-dependent and -independent factors on gene expression in songbird brain. Proceedings of the National Academy of Sciences. 16;109 Suppl 2:17245-52. PMC ID: 3477375

Balakrishnan CN, Lin Y-C, London SE, Clayton DF. (2012) RNA-seq transcriptome analysis of male and female zebra finch cell lines. Genomics.100(6):363-9. PMC ID: 3508314.

London SE and Clayton DF. (2010) The neurobiology of zebra finch song: insights from gene expression studies. Emu-Austral Ornithology. 110(3): 219-232.

Xie F*, London SE*, Southey BS*, Annangudi SP, Wadhams AA, Clayton DF, Sweedler JA. (2010) The zebra finch neuropeptidome: prediction, detection and expression.  BMC Biology. 8(1):28.   *these authors contributed equally

Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Heger A, Kong L, Ponting CP, Jarvis E, Mello CV, Minx P, Yang S-P, Lovell P, Velho TAF, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin Y-C, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backstrom N, Smeds L, Nabholz B, Itoh Y, Howard J, Pffenning A, Whitney O, Völker M, Skinner BM, Griffin DK, Ye L, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Oleander T, Lancet D, Villela A, Smit AFA, Hubley R, Konkel M, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng G, Eichler E, Stapley J, Slate J, Ekblom R, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, and Wilson RK. (2010) The genome of a songbird. Nature. 464(7289):757-62. PMC ID: 3477375.

London SE, Itoh Y, Lance VA, Wise PM, Ekanayake PS, Arnold AP, Schlinger BA. (2010) Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17βHSD type 4.  BMC Neuroscience. 11(1):47.

London SE and Clayton DF. (2010) Genomic and neural analysis of the estradiol-synthetic pathway in the zebra finch. BMC Neuroscience. 11(1):46.

Remage-Healey L, London SE, Schlinger BA. (2010) Birdsong and the neural production of steroids.  Journal of Chemical Neuroanatomy. 39(2): 72-81.

Clayton DF, Balakrishnan CN, London SE. (2009) Integrating genomes, brain and behavior in the study of songbirds.  Current Biology. 19(18): R865 - R873.

London SE, Remage-Healey L, Schlinger BA. (2009) Neurosteroid production in the songbird brain: a re-evaluation of core principles.  Frontiers in Neuroendocrinology. 30(3):302-314. PMC ID: 2724309

London SE, Dong S, Replogle K, Clayton DF. (2009) Developmental shifts in gene expression in the auditory forebrain during the sensitive period for song learning. Developmental Neurobiology. 69(7):437-450.

London SE and Clayton DF. (2008) Functional identification of sensory mechanisms required for developmental song learning.  Nature Neuroscience. 11(5):579-86.

Sloley S, Smith S, Gandhi S, Busby JA, London S, Luksch H, Clayton DF, Bhattacharya SK. (2007) Proteomic analyses of zebra finch optic tectum and comparative histochemistry.  Journal of Proteome Research. 6(6):2341-2350.

London SE and Schlinger BA. (2007) Steroidogenic enzymes along the ventricular proliferative zone in the developing songbird brain.  Journal of Comparative Neurology. 502(4):507-21.

Sloley S, Smith S, Algeciras M, Caldwell Busby JA, London S, Clayton DF, Bhattacharya SK. (2007) Proteomic analyses of songbird (zebra finch; Taeniopygia guttata) retina. Journal of Proteome Research. 6(3):1093-100.

London SE, Monks DA, Wade J, Schlinger BA. (2006) Widespread capacity for neurosteroid synthesis in the avian brain and song system. Endocrinology. 147(12):5975-87.

Schlinger BA and London SE. (2006) Neurosteroids and the songbird model system. Journal of Experimental Zoology. 305A(9):743-748.

Schlinger BA, Soma KK, London SE. (2006) Integrating steroid synthesis with steroid action: multiple mechanisms in birds.  Acta Zoologica Sinica. 52(Supp): 238–241.

Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA. (2004) Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction.  Journal of Neuroscience. 24:3152-63.

London SE, Boulter J, Schlinger BA.  (2003) Cloning of the zebra finch androgen synthetic enzyme CYP17: a study of its neural expression throughout posthatch development. Journal of Comparative Neurology. 467(4):496-508.

Schlinger BA, Soma KK, London SE. (2001) Neurosteroids and brain sexual differentiation. Trends in Neuroscience. 24(8):429-31.

Saldanha CJ, Schultz JD, London SE, Schlinger BA. (2000) Telencephalic aromatase but not a song circuit in a sub-oscine passerine, the golden-collared manakin (Manacus vitellinus). Brain Behavior and Evolution. 56(1): 29-37.